

INDIAN SCHOOL MUSCAT SENIOR SECTION DEPARTMENT OF CHEMISTRY CLASS XII CHAPTER -ELECTRO CHEMISTRY OBJECTIVE TYPE QUESTIONS

Multiple choice type questions

1. Which of the following statements regarding the variations of resistance with temperature occur during electrolytic and metallic conductions?

a) increase in electrolytic, decrease in metallic (b) decrease in electrolytic, increase in metallic (c) increase in hoth

(c) increase in both

- (d) decrease in both
- 2. An electrochemical cell can behave like an electrolytic cell when _____.
 - (a) Ecell = 0
 - (b) Ecell > Eext
 - (c) Eext > Ecell
 - (d) Ecell = Eext
- 3. The cell constant of a conductivity cell _____.
 - (a) changes with change of electrolyte.
 - (b) changes with change of concentration of electrolyte.
 - (c) changes with temperature of electrolyte.
 - (d) remains constant for a cell
- 4. The positive value of the standard electrode potential of Cu₂₊/Cu indicates that _____
 - (a) this redox couple is a stronger reducing agent than the H_+/H_2 couple.
 - (b) this redox couple is a stronger oxidising agent than $H_{\rm +}/H_{\rm 2}.$
 - (c) Cu can displace H₂ from acid.
 - (d) (d)Cu cannot displace H_2 from acid.
- 5. Molar conductivity of ionic solution depends on _____.
 - (a) temperature.
 - (b) distance between electrodes.
 - (c) concentration of electrolytes in solution.
 - (d) surface area of electrodes
- 6. Standard reduction electrode potentials of three metals A, B and C are respectively+ 0.5V,-3.0V and 1 .2 V. The reducing powers of these metals are
 - (a) B > C > A (b) A > B > C
 - (c) C > B > A (d) A > C > B
- 7. The E⁰ for half cells Fe / Fe²⁺ and Cu /Cu²⁺ are-0.44 V and + 0.32 V respectively. Then
 - (a) Cu^{2+} oxidises Fe (b) Cu^{2+} oxidises Fe^{2+}
 - (c) Cu oxidises Fe^{2+} (d) Cu reduces Fe^{2+}

- 8. If 0.01 M solution of an electrolyte has a resistance of 40 ohms in a cell having a cell constant of 0.4 cm⁻¹, then its molar conductance in ohm⁻¹ cm² mol⁻¹ is
 - (a) 10^2 (b) 10^4
 - (c) 10 (d) 10^3
- 9. According to Nernst equation, which is not correct if Q = Kc

(a)
$$E_{cell} = 0$$
 (b) $\frac{RT}{nF} \ln Q = E_{cell}^{\circ}$

(c)
$$K_c = e^{\frac{--cen}{RT}}$$
 (d) $E_{cell} = E_{cell}^{\circ}$

10. What is the standard cell potential E° for an electrochemical cell in which the following reaction takes place spontaneously ?

Cl₂(g)+2Br⁻ → Br₂(aq)+2Cl⁻
$$\Delta$$
G° = -50.6 kJ
a) 1.2 V (b) 0.53 V
(c) 0.26 V (d) -0.53 V

- 11. Molar conductivities (Am) at infinite dilution of NaCl, HCl and CH₃COONa are 126.4, 425.9 and 91.0 S cm² mol⁻¹ respectively. Λ^0 m for CH₃COOH will be (a) 425.5 S cm² mol⁻¹
 (b) 180.5 S cm² mol⁻¹
 (c) 290.8 S cm² mol⁻¹
 (d) 390.5 S cm² mol⁻¹
- 12. The conductance of a solution of an electrolyte is equal to that of its specific conductance. The cell constant of the conductivity cell is equal to

(a) resistance (b) faraday

(c) zero (d) unity

- 13. During conductivity measurement (based on Wheatstone bridge principle) using conductivity cell, alternating current (AC) is used because a direct current would lead to
 - (a) association and ionization

(b) electrolysis and polarization

(c) polymerization and polarization

(d) polarization

- 14. Which of the following solutions of KCl will have the highest value of specific conductance? (a) 0.01 M (b) 0.1 M (c) 1.0 M (d) 0.5 M
- 15. The value of molar conductance of HCl is greater than that of NaCl at a given temperature and concentration because
 - (a) ionic mobility of HCl is greater than that of NaCl
 - (b) the dipole moment of NaCl is greater than that of HCl
 - (c) NaCl is more ionic than HCl
 - (d) HCl is Bronsted acid and NaCl is a salt of a strong acid and strong base
- 16. The resistance of 0.5 M solution of an electrolyte in a cell was found to be 50Ω . If the electrodes in the cell are 2.2 cm apart and have an area of 4.4 cm2 then the molar conductivity (in S m² mole⁻¹) of the solution is

(a) 0.2 (b) 0.02 (c) 0.002 (d) None of these

- 17. The equilibrium constant for the reaction $Sr(s) +Mg^{+2}(aq) \rightarrow Sr^{+2}(aq) + Mg(s)$ is 2.69×10^{12} at 25°C. The E⁰ for a cell made up of the Sr/Sr⁺² and Mg⁺²/Mg half-cells (a) 0.3667 V (b) 0.7346 V (c) 0.1836 V (d) 0.1349 V
- 18. The dissociation constant of n-butyric acid is 1.6×10^{-5} and the molar conductivity at infinite dilution is 380×10^{-4} S m² mol⁻¹. The specific conductance of the 0.01 M acid solution is (a) 1.52 S m⁻¹ (b) 1.52×10^{-2} S m⁻¹ (c) 1.52×10^{-3} S m⁻¹ (d) None of these
- 19. The chemical reaction, $2AgCl(s) + H_2(g) \rightarrow 2HCl(aq) + 2Ag(s)$ taking place in a galvanic cell is represented by the notation;

(a)
$$Pt_{(s)} | H_{2(g)'} 1 bar | 1 M KCl_{(aq)} | AgCl_{(s)} | Ag_{(s)}$$

(b) $Pt_{(s)} | H_{2(g)'} 1 \text{ bar} | 1 \text{ M HCl}_{(aq)} |$

1MAg⁺_(aq)|Ag_(s)

- $\begin{array}{ll} (c) & \operatorname{Pt}_{(s)} | \operatorname{H}_{2(g)'} 1 \operatorname{bar} | 1 \operatorname{M} \operatorname{HCl}_{(aq)} | \operatorname{AgCl}_{(s)} | \operatorname{Ag}_{(s)} \\ (d) & \operatorname{Pt}_{(s)} | \operatorname{H}_{2(g)'} 1 \operatorname{bar} | 1 \operatorname{M} \operatorname{HCl}_{(aq)} | \operatorname{Ag}_{(s)} | \operatorname{AgCl}_{(s)} \end{array}$
- 20. Molar conductances of BaCl₂, H₂SO₄ and HCl at infinite dilutions are x₁, x₂ and x₃ respectively. Equivalent conductance of BaSO₄ at infinite dilution will be

(a) $(x_1 + x_2 - x_3)/2$	(b) $x_1 + x_2 - 2x_3$
(c) $(x_1 - x_2 - x_3)/2$	(d) $(x_1 + x_2 - 2x_3)/2$

21. The cell constant of a given cell is 0.47 cm⁻¹. The resistance of a solution placed in this cell is measured to be 31.6 ohm. The conductivity of the solution in Scm⁻¹

(a) 0.15	(b) 1.5
(c) 0.015	(d) 150

If the pressure of hydrogen gas is increased from 1 arm to 100 atm, keeping the hydrogen ion concentration constant at 1 M, the voltage of the hydrogen half cell at 25°C will be
 (a) 0.059 V (b) ±0.059 V

(a) –0.059 v	(D) +0.059 N
(c) 5.09 V	(d) 0.259 V

23. The hydrogen electrode is dipped in a solution of pH =3.0 at 25° C. The potential of hydrogen electrode would be

(a) –0.177 V	(b) 0.177 V
(c) 1.77 V	(d) 0.277 V

24. Given that E° (Zn^{2+/}Zn) = -0.763 V and E° (Cd^{2+/}Cd) = -0.403 V, the emf of the following cell Zn | Zn²⁺ (a = 0.04) || Cd²⁺ (a = 0.2) | Cd is given by
(a) E = +0.36 + [0.059 / 2] [log (0.2/0.004)]
(b) E = -0.36 + [0.059 / 2] [log (0.2/0.004)]

- (c) $E = +0.36 + [0.059 / 2] [\log (0.004/0.2)]$
- (d) $E = -0.36 + [0.059 / 2] [\log (0.004/0.2)]$
- 25. A conductivity cell containing electrodes made up of
 - (a) Gold
 - (b) Silver
 - (c) Platinised platinum
 - (d) Copper
- 26. Which of the following statement is correct?
 - (a) E_{Cell} and $\Delta_r G$ of cell reaction both are extensive properties.
 - (b) E_{cell} and $\Delta_r G$ of cell reaction both are . intensive properties.
 - (c) E_{Cell} is an intensive property while $\Delta_r G$ of cell reaction is an extensive property.
 - (d) E_{cell} is an extensive property while $\Delta_r G$ of cell reaction is an intensive property
- On electrolysis of dilute sulphuric acid using Pt electrodes ,the product obtained at the anode will be (a)Hydrogen (b)Oxygen
 - (c)H₂S (d)Sulphur dioxide
- 28. The conductivity of 0.20 M solution of KCl at 298 K is 0.0248 S cm⁻¹. Its molar conductivity is: (a) $120 \text{ S cm}^2 \text{ mol}^{-1}$ (b) $115 \text{ S cm}^2/\text{mol}$
 - (c) 124.0 S cm² mol⁻¹ (d) 1105 cm²/mol
- 29. An electrochemical cell stops working after some time because
 - (a) one of the electrodes is eaten away.
 - (b) electrode potentials of both the electrodes become equal in magnitude.
 - (c) electrode potentials of both electrodes go on decreasing.
 - (d) electrode potentials of both the electrodes go on increasing.
- 30. A standard hydrogen electrode has zero electrode potential because
 - (a) hydrogen is easier to oxidise.
 - (b) this electrode potential is assumed to be zero.
 - (c) hydrogen atom has only one electron.
 - (d) hydrogen is the lightest element

A statement of assertion is followed by a statement of reason. Mark the correct choice from the options given below

- a) Both assertion and reason are true and reason is the correct explanation of assertion.
- (b) Both assertion and reason are true but reason is not the correct explanation of assertion.
- (c) Assertion is true but reason is false.
- (d) Both assertion and reason are false
- 31. Assertion : Kohlrausch law helps to find the molar conductivity of weak electrolyte at infinite dilution.

Reason : Molar conductivity of a weak electrolyte at infinite dilution cannot be determined Experimentally

32. Assertion: For measuring resistance of an ionic solution an AC source is used. Reason: Concentration of ionic solution will change if DC source is used Fill in the blanks

- 33. The difference between the electrode potentials of two electrodes when no current is drawn through the cell is called ______.
- 34. The reaction is spontaneous if the cell potential is_____
- 35. Λ° for weak electrolyte is determined by _____.
- 36. For strong electrolytes, the plot of molar conductance versus \sqrt{c} is ______-
- 37. The electrode potential becomes equal to standard electrode potential when reactants and products concentration ratio is_____
- 38. Given E° (Cr^{3+/}Cr)=-0.74V, E° (MnO₄^{-/}/Mn²⁺)=1.51V, E° (Cr₂O₇^{2-/}Cr³⁺)=1.33V, E° (Cl⁻/Cl)=1.36V

Based on the above data, the strongest oxidizing agent is _____

39. The pressure of H_2 required to make the potential of H_2 -electrode zero in pure water at 298K is

(a) 10^{-10} atm (b) 10^{-4} atm (c) 10^{-14} atm (d) 10^{-12} atm Match the following

Column I	Column II
(a) Λ_m	(<i>i</i>) S cm ⁻¹
(b) E _{cell}	(<i>ii</i>) m ⁻¹
(c) ĸ	(iii) S cm ² mol ⁻¹
(d) G*	(<i>iv</i>) V

40.